PREMIER PROBLÈME:
Réfrigérateur domestique (d’après la base PT 2019)

A) Prédiction d’une machine réfrigérante dite MC

1) \(q_f < 0 \), \(q_c > 0 \), \(w > 0 \)

- \(q_f > 0 \): c'est le but d'un réfrigérateur !
Le fluide prend de l'énergie de la source froide.
- \(w > 0 \): c'est le coût ! Le fluide doit recevoir un travail.
- \(q_c < 0 \): le fluide cède de l'énergie à la source chaude (ex. au de la pièce via un échangeur thermique derrière le réfrigérateur).

2) \(\epsilon_f = \frac{\text{but}}{\text{coût}} \Rightarrow \epsilon_f = \frac{q_f}{w} \)

- \(\Delta U = q_f + q_c + w = 0 \) (1)
 \(1^{\text{-ème}} \) principe d'énergie
 cycle et \(U \) fonction d'état

- \(\Delta S = q_f \frac{T_f}{T_f} + q_c \frac{T_c}{T_c} + S_{syst} = 0 \) (2)
 \(2^{\text{-ème}} \) principe de la thermodynamique
 cycle et \(S \) fonction d'état

\[\Rightarrow \frac{q_f}{T_f} + \frac{q_c}{T_c} \leq 0 \]

\[\epsilon_f = \frac{q_f}{w} = -\frac{q_f}{q_c} \frac{T_f}{T_c} = -\frac{1}{1 + \frac{q_c}{q_f}} \]

- (2) : \(\frac{q_c}{T_c} \leq -\frac{q_f}{T_f} \Rightarrow \frac{q_c}{q_f} \leq -\frac{T_c}{T_f} \)

\[\Rightarrow 1 + \frac{q_c}{q_f} \leq 1 - \frac{T_c}{T_f} \]

B) Étude d'un cycle réfrigérant à compression de vapeur

3) \(q_f \) entre le réfrigérateur et le compresseur.

- \(q_c < 0 \): le fluide cède de l'énergie à la source chaude (réfrigérateur).

Dans un condenseur : refroidissement et condensation isothermes => le fluide cède de l'énergie à l'extérieur.

- le condenseur est au contact de la source chaude, et le fluide cède de l'énergie à la source chaude et c'est le sens des flèches.

- \(q_f > 0 \): le fluide reçoit de l'énergie de la source froide (réfrigérateur). Dans un évaporateur : évaporation et refroidissement isobares => le fluide reçoit de l'énergie de l'extérieur.

- l'évaporateur est au contact de la source froide, et le fluide reçoit de l'énergie de la source froide, d'où le sens des flèches.

4) * en 4 : volatil saturé à \(T_f = 0 \) °C \(\Rightarrow P = 2,3 \) bar

* \(4 \rightarrow 1 \) : isobare \(P = 2,3 \) bar

* (4-3) : isobare \(8,3 \) bar (vapeur) \(\rightarrow T_f = 10 \) °C

* (1-2) : isentropique (adéabatique + rotationelle)
* 2a) isentrope Δ_t / isobare 10 bar
 (cas 1a-3: liquéfaction isobare à 60°C)
* 2a-3: isobare 10 bar
* 3: isobare 10 bar / isotherme 30°C
* 3-4: isenthalpe
* 4: isenthalpe h_2 / isobare 2,9 bar

Eq: *diagramme (P, h)*: isenthalpe => isotherme
dans le domaine du liquide car $dh = c dT$
 => isotherme = verticale
 d'où le placement du point 3 (isotherme 30°C = verticale)
* dans le diagramme (T, s), l'isobare 10 bar est très proche de la courbe de saturation dans
 le domaine du liquide.

5) lecture graphique => document annexé.

6) Dans l'évaporateur, le fluide reçoit de
 l'énergie de la part de la source froide.
 $T_{evap} \leq T_f$
 (chaîne varie du chaud vers le froid)
* Dans le condenseur, le fluide cède de
 l'énergie à la source chaude $(Q_c \leq 0)$
 $T_{cond} > T_c$

7) On suppose le fluide parfait (absence de
 pente de charge).

8) *diagramme (P, h)*:
 $G_P \Rightarrow 2 \text{°} = \text{boîte Turel} \Rightarrow dh = c dT$
 => isotherme = isenthalpes = verticales
 On ce n'est pas le cas!

9) *diagramme (T, s)*: isobares = isothermes
 / isenthalpes = isothermes $(T \rightleftharpoons h = 0)$
 => le rayon hôte ne peut pas être assimilé à
 un C entre Δ_t et Δ_h.

$$ h_2 - h_4 = \frac{h_{20} - h_4}{\eta} = \frac{432 - 407}{0,25} = 95 $$

$$ h_2 = 33 + 407 = 440 \text{kJ/kg} $$

(2) $h_2 = 440 \text{kJ/kg} \wedge \text{isobare 10 bar}$

10) lecture graphique: $T_2 = 58°C$

11) cf. annexe: $\Delta_t h_2 = 440 \text{kJ/kg} \wedge \text{isobare 10 bar}$

12) Δ_h principe de la thérmodynamique pour la
 systèmes ouverts pour le fluide absent de
 $\Delta_t h_2 = \Delta_t h_2 - \Delta_t h_4 = \frac{\Delta_h}{h_2} + \Delta_t c_f$
 (adiabatique) (turbine)
 $\Rightarrow \Delta_h = \Delta_t h_2$

13) Entre l'entrée et la sortie d'une machine:

$$ \Delta h + \Delta e_c + \Delta e_p = \eta \frac{\Delta h}{h_2} + q $$

$$ P = \left(\Delta h + \Delta e_c + \Delta e_p \right) = P_c + P_e $$

$\Delta h = h_2 - h_1$ variation d'enthalpie massique
$\Delta e_c = e_c - e_1$ "d'énergie cinétique"
$\Delta e_p = e_p - e_1$ "potentiel"
$\eta = \text{travail indiqué massique} / P_e$: puissance indiquée
$q = \text{chaîne reçue par unité de masse} / P_e$: puissance
 thermique
14) * Chaleur nécessaire pour vaporiser 1 kg de fluide R134a à 20°C = 386 - 200
 "fluctuation"
 = 200 kcal kg⁻¹
 * Δp = g Δz comparable pour Δz = Δh
 Δz = \(\frac{200 \times 10^{-3}}{10} \) = 20 km ! ce qui est
 encore devant la hauteur d’un réfrigérateur (Δz = 1,2 m)
 \(\Rightarrow \) Δp \(\ll \) Δh
 \(\left(\Delta p = g \Delta z = 10 \times 1 \times 10 \text{ kcal kg}^{-1} \text{ m}^{-1} \right) \)
 \(\Delta h = 200 \times 10^{-3} \text{ kcal kg}^{-1} \text{ m}^{-1} \)
 \(\Rightarrow \) Δp \(\ll \) 0,01 % \(\ll \) 1

15) \[V \rightarrow V^S \]

On envisage 2 manières différentes de la masse
don traversant S pendant dt :
* dm = D dt
* cette masse se trouve dans le cylindre de section
 S de longueur V dt
 \(\Rightarrow \) dm = \(\mu \) \(\left(S \cdot V \cdot dt \right) \) = \(\frac{S \cdot V \cdot dt}{\rho} \)

\[D = \frac{S \cdot V}{\rho} \]

16) La volume massique est maximal au
 point 1.

17) En effet, au point 1, on est dans le domaine de la vapeur stèche (masse volumique faible
 qui pour le liquide pour la même pression), et
 on est en amont du compresseur
 \(\Rightarrow \) \(\frac{\rho_1}{\rho_2} \) car \(P_2 = 10 \text{ bar} \) \(\Rightarrow \) \(P_3 = 8,3 \text{ bar} \)
 alors que \(T_2 = 98 + 273 = 371 K \)
 \(\Rightarrow \) \(T_1 = 10 + 273 = 283 K \)
 et si GP : \(P_2 = \gamma T_2 \)
 \(\Rightarrow \) si \(P \), \(\gamma \)

18) \[V_{\min} = \frac{D \cdot \rho_{\min}}{S} = \frac{1 \times 10^{-2} \cdot 3 \cdot 10^{-2}}{1 \times 10^{-4}} \]
 \(\Rightarrow \) \(V_{\min} = 7 \text{ m} \cdot \text{ s}^{-1} \)

19) \[\Delta e_{\min} = \frac{V_{\min}^2}{2} - 0 = \frac{\pi^2}{2} = 25 \text{ J kg}^{-1} \]
 \(\Rightarrow \Delta h = 800 \text{ kcal kg}^{-1} \)

20) \(\Delta e_{\min} = \frac{h_1 - h_2}{h_2 - h_1} \)

21) \(\Delta e_{\min} = \frac{941}{941} \)

22) \(\Delta e_{\min} = \frac{h_2 - h_1}{h_2 - h_1} + 941 \)

23) \(\Delta e_{\min} = \frac{h_2 - h_1}{h_2 - h_1} + 941 \)

24) \(\Delta e_{\min} = \frac{941}{941} \) port de panier métal dans l'expansion

25) \(\Delta e_{\min} = \frac{941}{941} + 7 \text{ bar} \) compression adiabatique

26) \(\Delta e_{\min} = \frac{507 - 240}{400 - 300} = \frac{167}{33} \approx 5,1 \Rightarrow \) \(e_f = 5,1 \)

27) $P_{12}^{1} = P_{12}^{2} = D(K_{1} - K_{4}) = 1.10^{-2}(404 - 240)$
$P_{12}^{1} = 1.7 \text{ kW}$
$P_{12}^{2} = 0.33 \text{ kW}$

28) La vapeur est surchauffée après son évaporation afin d'éviter, dans le compresseur, de comprimer du liquide saturé pour éviter :
- un cycle de liquide
- corrélation

De plus, la surchauffe déplace le point q vers la droite $h_{1''} = h_{1} - h_{4}$
- le fluide prend davantage d'énergie à la source froide

29) Association réfrigérante - congélateur :

29a) isotherme $0^\circ C \cap$ isobare correspondant à l'isotherme $-20^\circ C$ sur la courbe de saturation \Rightarrow isobare $= 1.3 \text{ bar}$
(Δ idéal logique)

* on lit $h_{1} = 402 \text{ kJ.kg}^{-1}$
* $D(K_{1} - K_{4}) = P_{44}^{1} + P_{44}^{2}$ par parties
$D(K_{1} - K_{4})^{''} = P_{44}^{1''} + P_{44}^{2''}$
$P_{44}^{1''} = P_{44}^{1} + h_{4}$
Cette isobare détermine :
- $h_{1} - h_{4} = h_{1} - h_{4''}$
- $h_{4} = \frac{260 + 408}{2} = 384 \text{ kJ.kg}^{-1}$

29b) $h_{4}^{1} = 384 \text{ kJ.kg}^{-1}$

4': isobare 1.3 bar, isotherme $0^\circ C$
5': isobare 1.3 bar, isotherme $-20^\circ C$

25) flammé en couleurs verte .

26) $log P$ =

On se limite à un sous-refroidissement du liquide jusqu'à $30^\circ C$ pour limiter l'encombrement. Si on voulait diminuer T
jusqu'à $20^\circ C$ (température de la pièce, source chaude), il faudrait que l'échangeur (condenseur) soit plus grand.
27) \[\theta_T = \frac{P_{10} + P_{10}'}{P_{10}''} = \frac{P_{10} + P_{10}'}{P_{10}''} \]

D'après des raisonnements pour les systèmes ouverts :
\[\theta_T = \frac{k_1 - k_4}{k_1 - k_4} \]
\[\theta_T = \frac{400 - 240}{465 - 400} = 1.6 \]

27') \[\theta_T = \frac{k_1 - k_4}{k_1 - k_4} = 2.6 \]

29) Utilisation d'un réfrigérateur :

29.1) \[\theta_T - T_1 > 0 \]

* Dans le froid

* \[T_f > 0 \]

Dans le froid, on suppose que l'intérieur du réfrigérateur, où les transferts thermiques sont effectivement du chaud vers le froid.

\[\theta_T > 0 \]

29.2) Système : intérieur du réfrigérateur

Énergie entre \(t \) et \(t + \Delta t \):

\[dU = dQ = P_{10} \, dt \]

Donc :

\[dU = C_V \, dT = \theta_T \, dT = C_d \, dT \]

* (Éq : il aurait été plus mûr que l'énoncé formelle \(C_V \) et non \(C_d \), car à l'évidence on travaille à \(V \) constant...)

30) \[T = K \exp\left(-\frac{1}{C} t\right) + T_c \]

\[a = t = 0, \quad T = T_f \]

\[T(t) = (T_f - T_c) \exp\left(-\frac{1}{C} t\right) + T_c \]

31) \[T(t=0) = T_f \quad \Rightarrow \quad T_f = 293K = 4°C \]

\[T(t=\infty) = T_c \]

\[T_c = 293K = 20°C \]

32) \[\frac{T - T_c}{T_f - T_c} = \frac{1}{C} t \]

\[\text{droite de pente} \quad \frac{1}{C} = \frac{5}{52} \]

\[\lambda = \frac{5 \times 3 \times 10^5}{52} = 2.3 \times 10^4 J.K^{-1}.K^{-1} \]

\[\lambda = 2.3 \times 10^4 J.K^{-1}.K^{-1} = 8,0 W.K^{-1} \]

33) \[\theta_T = K \frac{T_f}{T_c - T_f} \] (question 2)

\[\theta_T = K \frac{T_f}{T_c - T_f} = 0,25 \times \frac{2777}{20 - 4} = 4,3 \]

\[\theta_T = 4,3 \]

34) \[P_{th} = \lambda (T_c - T_f) = 8,0 (20 - 4) \]

\[P_{th} = 1,3 \times 10^2 W \]
Pour compenser les fuites, il faut prélever

\[P_f = \frac{P_c}{\varepsilon_f} \Rightarrow \frac{P_c}{P_c - \varepsilon_f} = \frac{13 \cdot 10^3}{4,3} = 30 \text{ W} \]

36) système : intérieur du réfrigérateur

\[\text{d}U = \dot{Q} + \dot{W} = \dot{Q} = P_f \text{d}t + P_h \text{d}t \]

\[\text{d}Q = \dot{Q} \text{d}t \]

\[\Rightarrow C \text{d}T = A(T_c - T) \text{d}t + \frac{P_f}{\varepsilon_f} \text{d}t \]

\[C \text{d}T = A(T_c - T) - \varepsilon_f \frac{P_c}{T_c - T} \text{d}t \]

\[\Rightarrow \frac{\text{d}T}{\text{d}t} = - \frac{\varepsilon_f P_c}{C(T_c - T)} + \frac{1}{C} A(T_c - T) \]

\[\Rightarrow A = \frac{K}{C} \quad B = \frac{1}{C} \]

37) absence de fuites \(\Rightarrow P_f = 0 \Rightarrow B = 0 \)

\[\Rightarrow \frac{\text{d}T}{\text{d}t} = - \frac{AT_c}{T_c - T} \]

\[\Rightarrow \frac{\text{d}T}{T_c - T} = - A \text{d}t \]

\[\Rightarrow T_c \frac{dT}{T} - dT = -A \text{d}t \]

\[\Rightarrow \frac{dT}{T} = \frac{1}{A} \left(T - T_c \right) \frac{dT}{T} \]

On intègre : \(\ln \left(\frac{T}{T_e} \right) = \frac{1}{A} \left(T - T_c \right) - \frac{T_c}{A} \frac{T}{T_e} \)

\[\Rightarrow \frac{T}{T_e} = \frac{T - T_c}{A} + \frac{T_c}{A} \ln \frac{T}{T_e} \]

38) pour \(t = 5h \), \(T = 280K > T_e = 274K \).

\[\Rightarrow \text{à cause des pertes thermiques, la température décroît plus doucement, moins rapidement, qui en négligeant les pertes ther-} \]

miques \(\Rightarrow 0K \)

* au début : \(T \) proche de \(T_c \) ; les

pertes thermiques sont faibles \(\Rightarrow \) la chaleur cédée au fluide frigorifique a surtout pour effet de faire chuter \(T \) \(\Rightarrow \left| \frac{dT}{\text{d}t} \right| \) "grand" (pertes grandes)

* à la fin : \(T \) proche de \(T_e \) ; les pertes thermiques sont grandes \(\Rightarrow \) la chaleur cédée au fluide frigorifique est surtout à compenser par les pertes thermiques \(\Rightarrow T \) diminue peu \(\Rightarrow \left| \frac{dT}{\text{d}t} \right| \) "faible" (pertes faibles)

D'où l'allure de la courbe.
41) On les préfère à l’ammoniac R717 car avec le R717 :
- le COP est le + faible ;
- la teneur de compression est le + élevée (cf. amine, critères thermodynamiques, 2)
- la pression de condensation Pcond est le + élevée
- Tman est le plus grande.
ANNEXES à RENDRE avec la COPIE

Figure 1

Tableau 3

<table>
<thead>
<tr>
<th>point</th>
<th>1</th>
<th>2s</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1'</th>
<th>2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(bar)$</td>
<td>2,3</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>2,3</td>
<td>1,3</td>
<td>10</td>
</tr>
<tr>
<td>$T(°C)$</td>
<td>10</td>
<td>53</td>
<td>58</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>État du fluide</td>
<td>vapeur sèche</td>
<td>vapeur sèche</td>
<td>vapeur sèche</td>
<td>liquide</td>
<td>vapeur sèche</td>
<td>vapeur sèche</td>
<td>Vapeur sèche</td>
</tr>
<tr>
<td>$h(kJ.kg^{-1})$</td>
<td>407</td>
<td>432</td>
<td>440</td>
<td>≥ 240</td>
<td>≥ 240</td>
<td>402</td>
<td>465</td>
</tr>
</tbody>
</table>
La figure complète doit montrer 3 couleurs : une pour le cycle 1, 2s, 3, 4 ; une pour la portion 1, 2 ; une pour le cycle 3, 4, 4', 1, 2.
DEUXIÈME PROBLÈME : Étude du condenseur et de la tour de refroidissement d'une centrale thermique (d'après le cours PT 9003)

Question préliminaire : l'enthalpie massique de vaporisation de l'eau est la chaleur nécessaire pour réaliser, de façon reversible, à la température T (et donc à la pression P fixée), la vaporisation de l'unité de masse de l'eau liquide (habituellement notée L_{vg}, et par L_{vg}).

$$L_{\text{vg}}(45^\circ C) = 2383,3 - 188,35 = 2383,3 \text{ kJ kg}^{-1}$$

Première partie : Étude de la turbine à vapeur

1) En 5), vapeur saturante sèche à $T = 180^\circ C$ et $P = P_{\text{sat}}(180^\circ C)$

$$\Delta_1 = \Delta'_{(180^\circ C)} = 6,5813 \text{ kJ kg}^{-1} \cdot \text{K}^{-1}$$

2) Turbine : débit adiabatique reversible = isentropique

$$\Delta_2 = \Delta_1$$

$$x_2 = \frac{\Delta_1 - \Delta'_{(45^\circ C)}}{\Delta'_{(45^\circ C)}}$$

$$x_2 = \frac{6,5813 - 0,6383}{8,1661} = 0,73835$$

$$x_2 = 0,73835$$

3) b) Identité thermique : $\Delta h = T \Delta s + \nabla \Delta p$

$$\Delta h = c_p \Delta T$$ (état constant, on néglige l'effet de la pression)

$$\Delta h = c_p \frac{\Delta T}{T}$$

$$\Delta h = c_p \frac{\Delta T}{T}$$

$$\Delta h = c_p \frac{\Delta T}{T}$$

3) c) Avec hypothèse : $\Delta h = c_p \Delta T$

$$\frac{\Delta h}{c_p} = 6,3 \times (400 - 25) = 63 \text{ kJ kg}^{-1}$$

* Sans hypothèse :

$$\frac{\Delta h}{c_p} = \frac{T}{1000} - \frac{1}{10}$$

$$\frac{\Delta h}{c_p} = \frac{T}{1000} - \frac{1}{10}$$

$$\Delta h = 63 \text{ kJ kg}^{-1}$$

$$\Delta h = 6,3 \times 10^{-3} = 0,0063 \text{ kJ kg}^{-1}$$

Des variations étaient notées L_{vg} et L_{vg}.
4) a) En affinant, on a uniquement du liquide à $T = 55^\circ C$
\[P = P_v (55^\circ C) = 0.09358 \text{ atm} \]
\[\Rightarrow \text{le liquide est saturé} \]
\[h_1 = h' (55^\circ C) = 188.35 \text{ kJ.kg}^{-1} \]

b) \[\alpha_3 = \frac{h_3 - h' (55^\circ C)}{h'' (55^\circ C) - h' (55^\circ C)} \]
\[h_3 = h' (55^\circ C) + \alpha_3 (h'' (55^\circ C) - h' (55^\circ C)) \]
\[h_3 = 188.35 + \frac{288.33 - 188.35}{0.1} \]
\[h_3 = 482.8 \text{ kJ.kg}^{-1} \]

5) a) Régime permanent \Rightarrow débit en entrée $= $ débit en sortie
\[\eta_2 + \eta_3 = \eta_4 \]

b) ndeh : 3 entrées et 2 sorties
\((1, 3, 4, 5) \) (4, 5, 6).

pas de parties mobiles $\Rightarrow P_{10} = 0$
échange calorifique $\Rightarrow P_{6} = 0$

bilan calorifique (1er principe pour les systèmes clos):
\[\eta_6 + \eta_5 h_6 - \eta_3 h_3 - \eta_5 h_5 = \eta_4 + \eta_6 \]
avec $\eta_4 = \eta_1$ et $\eta_6 = \eta_5$

\[P_{6} = \frac{\eta_4 (h_4 - h_5)}{h_3 - h_4} \]

5c) \[\eta_4 = \eta_1 + \eta_3 \]
\[\eta_3 = \frac{\eta_5 (h_3 - h_5) - \eta_2 (h_2 - h_4)}{h_3 - h_4} \]
\[\eta_3 = \frac{288.33 \times 63 - 930 (188.33 - 188.35)}{482.8 - 188.35} \]
\[\eta_3 = 1.5 \text{ kJ.kg}^{-1} \]

6) \[P_v = P_v (0^\circ C) + c_p \varepsilon \]
\[\Rightarrow \frac{dP_v}{dT} = c_p \]
\[P_v (0^\circ C) = 2501.5 \text{ kJ.kg}^{-1} \]
\[\Rightarrow P_v = A + c_p \varepsilon = 2501.5 + 1.86 \varepsilon \text{ kJ.kg}^{-1} \]

7) \[P_{10} = P_{10} (0^\circ C) + c_p \varepsilon \]
\[P_{10} (0^\circ C) = 6.9 \times 40 = 1.74 \text{ kJ.kg}^{-1} \]
\[P_{10} = P_{10} (0^\circ C) + c_p \varepsilon = 6.9 \times 90 = 2.6 \text{ kJ.kg}^{-1} \]
\[\eta_{10} = \eta_{10} (90^\circ C) = \eta_{10} (320) = 2 \text{ kJ.kg}^{-1} \]
\[\eta_{10} = \eta_{10} (320) = \frac{1.8 \times 32}{32} = 1.8 \text{ kJ.kg}^{-1} \]

8a) lois de département : \(P_{10} = 0 \)

8b) bilan calorifique (plurielle entrée et plusieurs sorties)
\[\eta_6 h_6 + \eta_5 h_5 \]
\[\eta_3 h_3 + \eta_4 h_4 \]
\[\eta_4 h_4 \]
\[\eta_2 h_2 \]
\[\eta_1 h_1 \]

b) régime permanent \Rightarrow débit en entrée $= $ débit en sortie
\[\eta_6 + \eta_5 h_5 = \eta_4 + \eta_3 h_3 \]
\[\eta_4 + \eta_3 h_3 = \eta_2 h_2 + \eta_1 h_1 \]

9) bilan calorifique (système à 2 entrées et 1 sortie)
\[\eta_5 h_5 - \eta_3 h_3 - \eta_4 h_4 = 0 \]
\[P_v = \frac{P_v}{P_s} = 2,5 \quad \frac{\text{bar}}{\text{bar}} = 0,52 = \psi < 1 \]

\[\Rightarrow \psi < P_s \Rightarrow \text{le vapo est bien réchaud à la sortie de la zone de refroidissement.} \]

Quatrième partie : Débit d’air minimal

\[\text{10/ a) } P_v = P_v = 4,563 \times 10^{-2} \text{ bar} \]

\[P_8 = 10 \text{ bar} \]

\[P_v = \frac{P_v}{P_8} \]

\[\Rightarrow \frac{\eta_8}{\omega_8} = \frac{\frac{P_v}{P_8}}{1 + \frac{\eta_8}{\omega_8}} \]

\[\omega = \frac{\eta_8}{\omega_8} \]

\[= 3,1 \times 10^{-2} = \omega \]

10/ b) de 8/a) :

\[\omega = \frac{\eta_8}{\omega_8} \]

\[\Rightarrow \frac{\eta_8}{\omega_8} = \frac{\eta_8}{\omega_8} \]

\[= 1,4 \]

\[\eta_8 = 235 \times 10^{3} \text{ kg/ m}^3 \text{ s}^{-1} \]

\[\Rightarrow \eta_8 = 20 \times 10^{3} \text{ kg/ m}^3 \text{ s}^{-1} \]

\[\eta_8 = 62 \times 10^{3} \text{ kg/ m}^3 \text{ s}^{-1} \]

Le débit massique de vapo n’a pas diminué mais au contraire augmenté (\(\eta_8 : 554 \rightarrow 62 \text{ m}^3 \text{ / s} \)) alors que le débit massique d’air est quasiement divisé par 2 (\(\eta_8 : 34 \times 10^{3} \rightarrow 20 \times 10^{3} \)).

Le fonctionnement n’est pas recommandé car le refroidissement de l’air rejeté par la zone va faire passer le vapo d’eau à l’état de liquide \((P_v = P_s)\) et donc il ne va y avoir de la fluide dans le voisinage de la zone.