PREMIER PROBLEME: Étude de gæothermie domestique: études sur les ondes thermiques (d'après banque PT 2016)

1) Système étudié: cylindre de section S compris entre z et z + dz

On effectue un bilan d'énergie entre t et t + dt:
\[dH = \delta q \]
\[= \delta q_z (z, t) - \delta q_z (z + dz, t) \]
\[= \int_{\partial S} (\delta q_z (z, t) - \delta q_z (z + dz, t)) S \, dt \]
\[= \left. \frac{\partial \delta q_z}{\partial z} \right|_{z = z} \, dz \, S \, dt \]

On linéarise l'équation en première approximation:
\[\dot{\delta q} = - \lambda \frac{\partial^2 T}{\partial z^2} \]
\[\Rightarrow \dot{\delta q} = - \lambda \frac{2T}{2z^2} \]
\[\Rightarrow dH = \lambda \frac{2T}{2z^2} \, S \, dz \, dt \]

* D'autre part: \[dH = \text{dmi} c \, dT \]

\[\Rightarrow dH = c \, S \, dz \, dt \]
\[\Rightarrow \frac{c \, S}{\frac{\partial T}{\partial z}} \, S \, dz \, dt \]
\[\Rightarrow \frac{c \, S \, T}{\frac{\partial T}{\partial z}} = \lambda \frac{2T}{2z^2} \]

2) \[\omega_A = 2\pi \text{ rad/an} \text{ correspond à la variation annuelle de température: été/hiver} \]
\[\omega_J = 2\pi \text{ rad/jour} \text{ correspond à la variation journalière de température: nuit/journée} \]

3) On injecte la solution proposée dans l'équation différentielle:
\[\frac{2T}{2z} = -c \omega e^{-\frac{z}{\lambda}} \sin \left(\omega t + \frac{\pi}{2} \right) \]
\[\Rightarrow \frac{2T}{2z} = -c \omega \frac{z}{\lambda^2} \left(\cos \left(\omega t + \frac{\pi}{2} \right) - \sin \left(\omega t + \frac{\pi}{2} \right) \right) \]
\[\Rightarrow \frac{2T}{2z} = -c \omega \frac{z}{\lambda^2} \left(\cos \left(\omega t + \frac{\pi}{2} \right) - \sin \left(\omega t + \frac{\pi}{2} \right) \right) \]

4) \[\omega c \frac{S}{\frac{\partial T}{\partial z}} = \lambda \frac{2T}{2z^2} \]
\[\Rightarrow -c \omega e^{-\frac{z}{\lambda}} \sin \left(\omega t + \frac{\pi}{2} \right) \]
\[\Rightarrow -c \omega e^{-\frac{z}{\lambda}} \sin \left(\omega t + \frac{\pi}{2} \right) \]
\[\Rightarrow \frac{c \, S}{\frac{\partial T}{\partial z}} = \lambda \frac{2T}{2z^2} \]

5) Amplitude de l'onde: \[a e^{-\frac{z}{\lambda}} \]

6) L'onde se gérite que sur une épaisseur de l'ordre de quelques \(\delta \) (\(\delta \) = grandeur caractéristique de l'atténuation)

7) Analogie avec l'effet de phané :

8) c'est l'analogie de l'épaisseur de phané.
(effet de peau lors de la propagation d'une onde électromagnétique dans un milieu chimique en régime lentement variable)

\[\delta_3 = \sqrt{\frac{2.1}{R_{cw_3}}} = \sqrt{\frac{2 \times 0.5}{1500 \times 1000 \times 2 \times 10^{-5}}} \]

\[= \sqrt{\frac{1}{10^6 \times 10^{-5}}} = 10^{-1} \text{ m} \]

\[\delta_3 \approx 1.4 \times 10^{-1} \text{ m} \]

\[\delta_3 = \delta \text{ (cf. énoncé)} \]

\[\delta_3 \approx 2 \text{ m} \]

Les variations quotidiennes de température ne sont réelles que sur le sol; quelles que soient les variations de température annuelles, les variations quotidiennes de température sont réelles sur plusieurs mètres.

2) On veut \(\frac{T(3,t)}{T(0,t)} = \frac{1}{5} \) (en l'état d'amplitude)

\[\Rightarrow \frac{e^{-3}}{e^{-0}} = \frac{1}{5} \Rightarrow -3 = -\frac{1}{5} \Rightarrow -\frac{15}{5} \]

\[\Rightarrow x = 3 \ln 5 \]

\[\omega_A = 2 \times 10^{-2} \text{ rad/s} \Rightarrow \delta_A = 2 \text{ m} \]

\[\Rightarrow y = 3 \text{ m} \]

(cf. énoncé: \(\delta = 1.8 \text{ m} \))

Cf: ce phénomène est appelé "effet de canne" (on entasse les cannes pour limiter l'amplitude de la variation de température)
DEUXIÈME PROBLÈME : Étude de
géothermie domestique : dimensionnement
d'un quinto canadien (d'après laque PT
2016)

1) À 0, on renouvelle l'air du logement
pour avoir du O₂ !! (En respirant, on
consomme O₂ !!)

L'inconvénient est que l'air appartient
est froid. Pour le chauffer, il faut fournir
de l'énergie.

Volume du logement : \(V = 5 \times 100 \times 2 = 200 \text{m}^3 \)

\(D_V = 50 \text{m}^3 \cdot h^{-1} \)

durée nécessaire pour renouveler entièrement
l'air du logement : \(t = \frac{V}{D_V} = 4 \)

2) Avec le quinto canadien, l'air appartient
est "chauffé" ; "tiède" au contact du sol.

\[T_{\text{air}} = T_0 + 12 \text{°C} \]

* Sans quinto canadien, l'air passe de \(T_{\text{ext}} \) à \(T_e \):

Pour unité de masse : \(\rho = c_p (T_e - T_{\text{ext}}) \)

Pour unité de temps : \(P = \frac{dn}{dt} = c_p \rho (T_e - T_{\text{ext}}) \)

\[P = c_p (T_e - T_{\text{ext}}) \]

* Avec quinto canadien : l'air passe de \(T_{\text{ext}} \) à \(T_e \)

\[P_e = \varepsilon D_V c_p (T_e - T_{\text{ext}}) \]

\[P = \varepsilon D_V c_p (T_e - T_{\text{ext}}) \]

\[P = \frac{1,275 \times 50}{3600} \times 1000 \times (12 + 4) \]

\[P = 2,8 \times 10^4 \text{ W} \]

Le gain est considérable !

3) On applique le premier principe au système ouvert

\[\frac{d\rho}{dr} \frac{dV}{dr} = \frac{dE}{dr} \]

\[E = c_p (T(x + dx) - T(x)) = -\frac{dE}{dT} \frac{dT}{dx} + dE \]

\[T(x) = T_0 \text{ alors que la}

\[\text{puissance thermique reçue par le sol est } > 0. \]

\[E \frac{dT}{dx} + 2\pi R R \frac{dT}{dx} = 0 \]

\[\frac{dT}{dx} + \frac{2\pi R R}{E c_p} \frac{dT}{dx} = 0 \]

\[\frac{dT}{dx} = \frac{c_p}{\pi R R} (T - T_0) \]

\[\frac{d\rho}{dx} + \alpha \frac{dT}{dx} = \frac{2\pi R R}{E c_p} \]

\[\frac{d\rho}{dx} + K \theta = 0 \text{ avec } K = \frac{2\pi R R}{E c_p} \]

\[\theta = \theta_0 - K x \text{ avec } \theta_0 = T_{\text{ext}} - T_0 \]

condition aux limites : en \(x = 0, \theta_0 = T_{\text{ext}} - T_0 \)

\[\theta = \theta_0 - K x \text{ avec } \theta_0 = T_{\text{ext}} - T_0 \]
4) \(T_{\text{finale}} = 36\% \ T_{\text{max}} = 36\% \ T_0 = 0,36 \ T_0 \)
\(= T(n=L) \)
\[T(L) - T_0 = (T_{\text{ext}} - T_0) e^{-KL/n} \]
\[0,36 \ T_0 \]
\[\Rightarrow e^{-KL} =
\frac{0,04 \ T_0}{T_{\text{ext}} - T_0} \]
\[\Rightarrow L = \frac{A}{K} \ ln \ \frac{0,04 \ T_0}{T_0 - T_{\text{ext}}} \]
\[L = \frac{-1}{0,15} \ ln \ \frac{0,04 \times 12}{12 + 4} = \frac{-1}{0,15} \ ln \ 0,03 \]
\[L = \frac{-1}{0,15} \times (-3,5) \text{ (cf. encadré)} \]
\[L = 23 \text{ m} \]

5) Si le débit augmente, l'air circulant dans le tuyau a moins le temps de se réchauffer au contact du sol, il finit donc une canalisation de plus grande longueur \(L \) pour obtenir la température souhaitée en sortie.

6) Si le diamètre est faible, l'air circulant sera davantage au contact du sol et se réchauffera donc plus vite. \(L \) pourra donc être "faible".
D'ou si \(R \) est faible, il faut \(L \) pour obtenir la température souhaitée en sortie.
* Mais si \(R \) est faible, ça augmente les pertes de charge.
TROISIÈME PROBLÈME : Étude de géothermie domestique : remplacement d'un chauffage électrique par un chauffage géothermique horizontal (d'après le C2 P2016)

1) Source chaude : circuit de chauffage

 4) Source froide : circuit captage

\[Q_f > 0 \]

\[W > 0 \]

compresseur

Le fluide réfrigérant R407C perd de l'énergie à la source froide (circuit captant), la source chaude (circuit de chauffage) le récupère. (\(Q_c < 0 \)).

2) Le circuit captant est au contact de l'évaporateur.

En effet, le fluide réfrigérant R407C perd de l'énergie au circuit captant (\(Q_f > 0 \)) et on l'isole en régionaire (\(Q_p > 0 \)).

3) \[P = \frac{E_{chauffage}}{t} = \frac{7000 \text{ kW}}{6 \text{ mois}} = \frac{7 \times 10^6 \text{ Wh}}{365 \times 24 \text{ h}} = 1.6 \times 10^3 \text{ Wh} \]

\[P = 1.6 \text{ kW} \]

5) \[P_{min} = 2000 \text{ W} > P_{moy} = 1.6 \text{ kW} \]

C'est étrange car on ne chauffe pas de la même manière pendant 6 mois ! La puissance moyenne n'a pas de sens ! Il faut prendre les pics de fluid (loser) pour dimensionner la PAC.

(b) Dans le détendeur, l'évolution est isentropique.

\[\frac{h_4}{h_3} = \frac{h_2}{h_1} \]

\[h_3 = h_2 (27 \text{ bar}) = 235 \text{ kJ/kg} \]

\[h_4 = \frac{235 \text{ kJ/kg}}{410 - 210} = 85 \]

\[x_4 = 0.43 \]

\[P (\text{bar}) \]

\[27 \]

\[6 \]

\[0 \]

\[OK cycle inversé \]
6) 1ère principe pour le fluide traversant le condenseur

\[(h_3 - h_2) + \frac{\partial Q}{\partial t} + \frac{\partial W}{\partial t} = m \cdot \frac{dU}{dt} \]

\[= q_f + q_m = \sum \text{f接待 par de partiels molé} \]

\[q_c = h_3 - h_2 = h(273 \text{K}) - h(30\text{C}) \]

\[q_c = 295 - 435 = \frac{-140 \text{kJ/kg}}{q_c} \]

1ère principe pour le fluide traversant le compresseur

\[h_f - h_1 = w_{st} + 720 \text{kJ/kg} \]

\[w_{comp} = h_f - h_1 \]

Hypothèse : Au point 1, on a de la vapeur d'eau saturée sèche (ainsi, le fluide R134a prend une masse d'énergie à la source froide, et de plus, on n'a que du gaz lors de la compression, donc moins de condensé sur les pales).

Ainsi, \(h_1 = h_v(5 \text{°C}, 6 \text{bar}) = 410 \text{kJ/kg} \)

\(h_2 = h_v(70 \text{°C}, 8 \text{bar}) = 435 \text{kJ/kg} \)

\[\Rightarrow w_{comp} = 435 - 410 = \frac{25 \text{kJ/kg}}{w_{comp}} \]

Au cours du cycle : \(\Delta U = 0 \)

\[(h_2 - h_1) + \sum (h_3 - h_2) + (h_f - h_3) + (h_4 - h_4) = 0 \]

\[w_{comp} \quad q_c \quad w_f \]

En effet, d'après 1ère principe pour le fluide traversant l'évaporateur : \(h_a - h_1 = q_f + m \cdot w_{st} \)

\[q_f = -q_c - w_{comp} = 140 - 25 = 115 \text{kJ/kg} \]

\[q_f = 115 \text{kJ/kg} \]

\[q_f = h_a - h_1 = h_a - h_2 = h_v(50 \text{C}, 6 \text{bar}) - h_v(60 \text{C}) \]

\[= 440 - 435 = 115 \text{kJ/kg} \]

\[\Rightarrow q_f = \frac{19}{4} \text{kJ/kg} \]

\[\frac{140}{25} \text{kJ/kg} \]

\[e = 5,6 \]

\[\Rightarrow \Delta U = 0 = W + Q_C + \dot{Q}_c \]

\[\Rightarrow 1^\text{ère principe} \]

\[\text{V fluide d'état} \]

\[\Delta S = 0 \quad \frac{\dot{Q}_f + Q_c}{T_F} \text{ (cas réversible)} \]

\[e = \frac{-Q_c}{W} = \frac{-Q_c}{-Q_F - Q_C} = \frac{1}{1 + \frac{\dot{Q}_c}{Q_c}} = 1 \]

\[\Rightarrow e = 5,6 \leq e_{nom} = 6,1 \text{ OK!} \]

\[\Rightarrow \text{OK car il y a des irréversibilités dans le cas réel} \]

\[\Rightarrow e = 5,6 = \frac{P_{comp}}{T_{comp}} \]

\[\Rightarrow \frac{P_{comp}}{T_{comp}} = \frac{7000}{5,6} = 1,3 \times 10^3 \text{W} \]

\[\frac{P_{dec}}{T_{comp}} = \frac{1,3 \times 10^3}{0,75} = 1,2 \times 10^3 \text{W} \]

\[\Rightarrow P_{dec} = 1,2 \text{kW} \]

\[\Rightarrow P_{dec} = \frac{P_{comp}}{e} = \frac{1}{7} \text{P. moyenne} \]

\[= \frac{1,6}{0,75 \times 5,6} \Rightarrow P_{dec} = 0,38 \text{kW} \]

\[E_{dec} = \frac{P_{dec} \times t}{6 \text{mois}} = 0,38 \times 365 \times 24 \]

\[\Rightarrow E_{dec} = 1,2 \times 10^3 \text{kWh} \]

\[\text{D) gain} = (7000 \text{kWh} - 1,2 \times 10^3 \text{kWh}) \times 0,15 \text{€/kWh} \]

\[\text{gain} = 800 € \]

"ça va, te la comp d'ye ronge quand on construit une maison!"
QUATRIÈME PROBLÈME : Moteur de Carnot
(d'après banque PT)

1) Étude d'un gaz parfait :

1a) principe : $\text{d}U = \text{d}Q + \text{d}W = \text{d}Q \text{ net} + \text{d}W \text{ net}
\Rightarrow \text{d}Q = mC_v \text{d}T + (l-P) \text{d}V
$

C_v est modéré (normalement note $C_{v_{mod}}$)

2) C → D, $\Delta U = 0$ $(6P$ et $T = T_c = \text{cône} \Rightarrow P_2$.)

W = $-Q_c = -P_2 V_2$

$Q_c = mRT_c \ln \frac{V_2}{V_c} = 613J
$

3) cycle $\Rightarrow \Delta U = 0$ (U fonction d'état)

$W = Q_c + Q_f \Rightarrow W = -Q_c - Q_f$

même calcul que précédemment $\Rightarrow Q_f = mRT_c \ln \frac{V_0}{V_c}$

$P = \frac{RT_c}{V_c}$

4) rendement $\Rightarrow \frac{P}{Q_c} = 1 - \frac{P}{T_c} = 0,625$

5) Étude d'un gaz de Van der Waals :

1a) principe : $\text{d}U = \text{d}Q + \text{d}W = \text{d}Q \text{ net} + \text{d}W \text{ net}$

6) $\text{d}Q = T \text{d}S$ (réversible) $(t = \text{principe})
\Rightarrow S = \frac{5}{2} mRT \text{d}T + mRT \frac{\text{d}V}{V_{n-b}}$
Le rendement est identique pour ce gaz de Van der Waals et pour un GP c'est le rendement maximal thermique donné par le théorème Carnot, qui est indépendant de la nature du fluide utilisant le cycle.

Etuide d'un transfert thermique

1)
\[\Delta Q_c = \int_{T_0}^{T_1} \frac{dW}{\frac{d\theta}{dT}} \]

\[\dot{Q}_c = \dot{W}_c \]

\[\dot{Q}_c = \frac{W}{Q_c} = 0.1625 \]

Etuide de la puissance d'une machine thermique

1)
\[\dot{t}_1 = \frac{Q_1}{\dot{Q} (T_1 - T_0)} \quad \text{et} \quad \dot{t}_2 = \frac{Q_2}{\dot{Q} (T_2 - T_0)} \]

au \(Q_1 \) et \(Q_2 > 0 \) (cf. definition)

2)
\[\dot{t}_1 = \frac{Q_1}{\dot{Q} (T_1 - T_0)} \quad \text{et} \quad \dot{t}_2 = \frac{Q_2}{\dot{Q} (T_2 - T_0)} \]

Le cycle \(\Delta S = 0 = \dot{S}_{\text{cycle}} + \dot{S}_{\text{gauche}} \)

\[\dot{S}_{\text{gauche}} = - \dot{S} \quad \text{et} \quad \dot{S}_{\text{droite}} = \dot{S}_{\text{gauche}} \]

la transformation interstitielle est réversible.
rendement } P = \frac{W_m}{Q_c} \\n\n\frac{Q_a - Q_c}{T_a - T_c} = 0 \Rightarrow Q_a = \frac{T_a}{T_c} Q_c \\n\nQ_a - Q_c - W_m = 0 = Q_a \left(1 - \frac{T_a}{T_c}\right) - W_m \\n\n\text{rendement } P = \frac{T_a}{T_c} \\n\n3) \quad Q_a = \frac{W_m}{1 - \frac{T_a}{T_c}} \quad \text{et} \quad Q_c = \frac{T_a}{T_c} Q_a = \frac{W_m}{T_a - T_c} \\n\n4) \quad T_a = T_c - T_q \quad \text{et} \quad T_c = T_q \frac{Q_a}{g(T_c - T_q)} \\n\n\Rightarrow T_a = \frac{W_m}{g(T_c - T_q)} \left(\frac{T_a}{T_a - T_c} + \frac{T_c}{T_a - T_c}\right) \\n\n5) \quad P = \frac{W_m}{T_a} = \frac{g(T_c - T_q)}{T_a - T_c} \left(\frac{T_a}{T_a - T_c} + \frac{T_c}{T_a - T_c}\right) \\n\n6) \quad \frac{1}{P} = ? \\n\n\quad \frac{1}{P} = \frac{1}{gT_a \frac{T_a}{T_a - T_c} + \frac{T_c}{T_a - T_c}} \\n\n\\n\quad \frac{1}{P} = \frac{1}{g \left(1 - \frac{1}{x} \frac{T_q}{T_c - T_q}\right)} \left(1 - \frac{1}{x} \frac{T_c}{T_c - T_q}\right) \\n\n\quad \frac{1}{P} = \frac{1}{g} \left[\frac{1}{\theta - 6(x - 1) - \frac{1}{x} - 1}\right] \\n\n\quad \frac{1}{P} = \frac{1}{g} \left[\frac{1}{\theta - 6(x - 1) - \frac{1}{x} - 1}\right] \\n\n\quad \text{AT_c et T_q dommages, } \frac{1}{P} \text{ est une fonction de } x \text{ et de } \theta. \\n\n1 < x < \frac{T_c}{T_q} \text{ et } 0 < \theta < T_c - T_q \\n\nLa recherche du minimum de la fonction } \frac{1}{P} \text{ (P min) conduit à l'ensemble des deux conditions nécessaires :} \\n\n\quad \left(\frac{1}{P}\right)' = \left(\frac{1}{P}\right)'' = 0 \quad \text{avec} \quad \left(\frac{1}{P}\right)' = \frac{2(\theta)}{\theta} \\n\n\text{et} \quad \left(\frac{1}{P}\right)'' = \frac{2(\theta)}{\theta^2} \\n\n\quad \theta = \frac{T_c}{T_q} \text{ et } x = \frac{T_c}{T_q} \text{, le minimum est atteint là où } P \min = P(x, \theta). \\n\n\quad \theta = \frac{T_c}{T_q} \text{ et } x = \frac{T_c}{T_q} \text{, le minimum est atteint là où } P \min = P(x, \theta). \\n\n\quad \text{La dérivée étant négative sur le reste de l'intervalle, cette valeur correspond bien à un minimum pour la fonction } P(x, \theta). \\n\n\quad \text{La puissance est maximale pour } \theta = \theta_0 = \frac{T_c - T_q}{2} \text{,} \\n\n\quad \theta_0 = \theta_0(x_0, \theta_0) = \frac{T_c}{T_q} \text{, le minimum est atteint là où } P \min = P(x, \theta_0). \\n\n\quad \theta = \frac{T_c}{T_q} \text{ et } x = \frac{T_c}{T_q} \text{, le minimum est atteint là où } P \min = P(x, \theta_0). \\n\n\quad \theta = \frac{T_c}{T_q} \text{ et } x = \frac{T_c}{T_q} \text{, le minimum est atteint là où } P \min = P(x, \theta_0).
\[P = 1 - \frac{T_1}{T_2} = 1 - \frac{1}{x} \quad (\phi \text{ III/3}) \]

\[x = \sqrt{\frac{T_1}{T_2}} \quad \Rightarrow \quad P_{\text{c}} = 1 - \sqrt{\frac{T_1}{T_2}} \leq P_{\text{c}} = 1 - \frac{T_1}{T_2} \]

\[\Rightarrow \quad \text{la puissance maximale n'est donnée qu'en déterminant du rendement.} \]

<table>
<thead>
<tr>
<th></th>
<th>Rendement expérimental</th>
<th>Puissance</th>
<th>Carnot</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Thurnal</td>
<td>0,36</td>
<td>0,40</td>
<td>0,64</td>
</tr>
<tr>
<td>Cadot</td>
<td>0,30</td>
<td>0,27</td>
<td>0,47</td>
</tr>
<tr>
<td>Castello</td>
<td>0,16</td>
<td>0,18</td>
<td>0,33</td>
</tr>
</tbody>
</table>

Le rendement expérimental est nécessairement inférieur à la puissance thermodynamique Carnot (as indépendamment des irréversibilités thermodynamiques, rendement mécanique \(P < P_{\text{c}} \)).

Si pour les centrales de West Thurnal et Castello, la recherche de la puissance maximale n'a été privilégiée \(P_{\text{exp}} < P_{\text{c}} \), en revanche, pour celle de Cadot, les conditions d'un rendement plus élevé ont pu être atteintes \(P > P_{\text{c}} \).